Stereoselective synthesis of \boldsymbol{C}-4'-aminouridines (uracil C-4-amino-D-ribonucleosides)

Masataka Yokoyama,*ab Taku Ikenogami ${ }^{b}$ and Hideo Togo ${ }^{a b}$
${ }^{a}$ Department of Chemistry, Faculty of Science, ${ }^{\text {b }}$ Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received (in Cambridge, UK) 14th March 2000, Accepted 4th May 2000
Published on the Web 9th June 2000

The first $C-4^{\prime}$-aminouridines can be synthesized in an α, β-stereoselective manner starting from l-glutamic acid. For the synthesis of $\alpha-C-4^{\prime}$-aminouridine, a key compound $\mathbf{9}$ is cyclized with trifluoroacetic acid followed by reduction with $\mathrm{NaBH}_{3} \mathrm{CN}$, while 9 is reduced with NaBH_{4} followed by mesylation to give $\beta-C-4$-aminouridine. Further, an acetonide-protection method is preferred for the synthesis of $\alpha-C-4^{\prime}$-aminouridine.

Introduction

As part of our ongoing programme in the study of C-nucleosides as a new type of DNA and RNA subunit, ${ }^{1}$ we have been interested in the so-called C-azanucleosides ${ }^{2}$ in which the endocyclic ribosyl ring oxygen is replaced with a nitrogen atom. \dagger Recently, C-amino-L-lyxonucleosides, ${ }^{3} C$-amino-2-deoxy-L-lyxonucleosides, ${ }^{4}$ and C-amino-2,3-dideoxynucleosides ${ }^{5}$ have been synthesized and shown to have no anti-HIV activity in our laboratory. Judging from these biological results, the enzymes which may function in the life cycle of HIV virus cannot recognize our C-aminonucleosides due to the abnormal type of sugar moiety. Therefore, we intended to synthesize C-aminouridines as a normal type of C-aminonucleoside. Herein, we present the first synthesis of C-aminouridines starting from commercially available L-glutamic acid.

Results and discussion

For the synthesis of C-aminouridines we chose 5 -(hydroxy-methyl)pyrrolidin-2-one $\mathbf{1}$ as the starting material (Scheme 1).
\dagger In accordance with IUPAC-IUB systematic nomenclature, these compounds should instead be called iminonucleosides, and this terminology will be followed in this paper.

Compound 1 was prepared easily from L-glutamic acid by the usual procedure. ${ }^{6}$ Next, $\mathbf{1}$ was protected with tert-butyldimethylsilyl (TBDMS) and tert-butoxycarbonyl (Boc) groups to afford 2 in 95% yield, ${ }^{7}$ the phenylselenated product of which was then oxidized with $\mathrm{H}_{2} \mathrm{O}_{2}$, yielding $\mathbf{3}$ in 61% overall yield. When $\mathbf{3}$ was treated with OsO_{4} in the usual way followed by protection with TBDMSCl, $\mathbf{4}^{8}$ was obtained in 72% overall yield.

As a model experiment, to a stirred THF solution of $\mathbf{4}$ was added at $0{ }^{\circ} \mathrm{C}$ the thienylmagnesium bromide which was prepared from the reaction of 2-bromothiophene with magnesium by the usual way. The reaction mixture was subjected to usual purification to give $\mathbf{5}$ in 78% yield. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing 5 and trifluoroacetic acid (TFA) was stirred at room temperature for 3 h . In this step a cyclic imine intermediate 6 could be observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Without isolation of $\mathbf{6}$, the reaction mixture was reduced with $\mathrm{NaBH}_{3} \mathrm{CN}$ at room temperature to give 7 in 71% yield ($\alpha: \beta=7: 1$). 7 could be easily separated by usual column chromatograpy and each anomer 7a and $7 \mathbf{b}$ was then refluxed with $\mathrm{HCl}-\mathrm{MeOH}$ to give the thiophene C-aminoribonucleosides $\mathbf{8 \alpha}$ and $\mathbf{8 \beta}$ as their white, powdery HCl salts in 87 and 90% yield, respectively.

Next, the synthesis of a desired C-aminouridine was carried out in a similar way to that mentioned above by using the lithium reagent of 2,4-dimethoxypyrimidine which was prepared

Scheme 1 Reagents, conditions and yields: (a) i. TBDMSCl, imidazole, DMF, 100%; ii. $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, $\mathrm{CH}_{3} \mathrm{CN}$, rt, 95%. (b) i. LiHMDS , PhSeCl , THF, $-78{ }^{\circ} \mathrm{C}, 83 \%$; ii. $\mathrm{H}_{2} \mathrm{O}_{2}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 74 \%$. (c) i. OsO O_{4}, NMO, acetone- $\mathrm{H}_{2} \mathrm{O}, 73 \%$; ii. TBDMSCl, imidazole, DMAP, DMF, 98%. (d) ThMgBr, THF, $0^{\circ} \mathrm{C}(3 \mathrm{~h}), 78 \%$. (e) i. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 3 \mathrm{~h}$; ii. $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{EtOH}, \mathrm{rt}, 2.5 \mathrm{~h}, 71 \%(\alpha: \beta=7: 1)$. (f) conc. HCl, MeOH, reflux, $3 \mathrm{~h}, 87 \%$ (α); 90% (β).
via halogen-metal exchange between 5-bromo-2,4-dimethoxy pyrimidine and $n-\mathrm{BuLi}$ below $-78{ }^{\circ} \mathrm{C}$. The yield of 9 was 28% from 4, and 10 was obtained in 40% yield from 9 in an α-selective manner (Scheme 2). This low conversion yield and α-selectivity

Scheme 2 Reagents, conditions and yields:(g) UrLi, THF, $-78^{\circ} \mathrm{C}$ (2 h), 28%. (h) i. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 3 h ; ii. $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{EtOH}$, rt, 2.5 h , 40%. (i) conc. $\mathrm{HCl}, \mathrm{MeOH}$, reflux, $3 \mathrm{~h}, 85 \%$.
may be caused by the fact that the hydride ion attacks only from the β-side of a cyclic imino intermediate (the compound corresponding to 6 shown in Scheme 1) due to its bulky OTBDMS group.

In order to obtain the β - C-aminouridine, reduction of ketone derivative 9 was examined. However, this was difficult because of the bulky groups around its carbonyl group. Among several reductive reagents such as $\mathrm{LiAlH}_{4}(\mathrm{LAH}), \mathrm{LiBEt}_{3} \mathrm{H}$ (Superhydride), $\mathrm{Al}\left(\mathrm{Bu}^{\mathrm{i}}\right)_{2} \mathrm{H}$ (DIBAL-H), and NaBH_{4}, the following conditions gave the best result. An EtOH solution of 9 and NaBH_{4} was stirred for 10 h at room temperature. The reaction mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (Scheme 3). Usual work-up gave an alcohol derivative $\mathbf{1 2}$ in 36% yield. The conversion yield is calculated as 59% based on consumed 9 . Next, 12 was stirred with MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ to give a cyclic compound 13 in β-selective manner in 87% yield. Deprotection and purification of $\mathbf{1 3}$ was performed in the usual way to afford the desired β-aminouridine $\mathbf{1 1 \beta}$ as white, powdery HCl salt in 95% yield.

Furthermore, attempts to increase the yields in steps g and j (Scheme 2 and 3) were examined in order to try to obtain gram

Scheme 3 Reagents, conditions and yields: (j) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{rt}, 10 \mathrm{~h}$, 36% (conversion yield: 59%). (k) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 87 \%$. (l) conc. $\mathrm{HCl}, \mathrm{MeOH}$, reflux, $3 \mathrm{~h}, 95 \%$.
quantities of compound 11. Perhaps the bulky groups such as $3-O T B D M S$ of 4 and 2-OTBDMS of 9 hinder the nucleophilic attack of uracil-lithium and the hydride reduction, respectively. Therefore, the 3 - and 4-OTBDMS groups of 4 were changed to a 3,4-isopropylidene dioxy group to give $\mathbf{1 4}^{9}$ in 90% yield from
the intermediate vicinal diol. The reaction of $\mathbf{1 4}$ with uracillithium gave 15, which was then reduced with NaBH_{4} to give 16 in an R-selective manner in a moderate yield, as expected (65%). The cyclization of $\mathbf{1 6}$ was performed by using MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ to give $\mathbf{1 7} \boldsymbol{\alpha}$ and $\mathbf{1 7} \boldsymbol{\beta}$ in 80 , and 11% yield, respectively (Scheme 4).

Scheme 4 Reagents, conditions and yields: (m) i. OsO_{4}, NMO, acetone$\mathrm{H}_{2} \mathrm{O}, 73 \%$; ii. DMP (2,2-dimethoxypropane), p - $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$. (n) i. UrLi, THF, $-78{ }^{\circ} \mathrm{C}(2 \mathrm{~h})$; ii. NaBH_{4}, $\mathrm{EtOH}, 65 \%$ ($R: S=7: 1$). (o) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%(\alpha) ; 11 \%(\beta)$. (p) conc. $\mathrm{HCl}, \mathrm{MeOH}$, reflux, 3 h, 87% (α); 90% (β).

In the reduction of 9 and $15, S$ - and R-selectivities can be explained by reasoning that their transition states exist respectively as TS-1 and TS-2: TS-1 has the pyrimidine moiety against the two bulky OTBDMS groups in the 2- and 3-positions, while TS-2 has the pyrimidine moiety avoiding the bulky groups (NHBoc and $\mathrm{CH}_{2} \mathrm{OTBDMS}$) in the 4-position due to the compact acetonide group (Fig. 1).

The superiority of acetonide protection over TBDMS protection is shown by comparison of the overall yields based on 3 : the former gives $\mathbf{1 1 \alpha}(29.8 \%)$ and $\mathbf{1 1 \beta}(4.2 \%)$, while the latter gives $11 \boldsymbol{\alpha}(6.9 \%)$ and $\mathbf{1 1 \beta}(8.3 \%)$. Therefore, the former method is better for $11 \boldsymbol{\alpha}$.

The structures of $\mathbf{1 1} \boldsymbol{\alpha}$ and $\mathbf{1 1 \beta}$ were determined mainly by NMR measurements. Their NOESY data are shown in Fig. 2; 11β shows an NOE between $1-\mathrm{H}$ and $4-\mathrm{H}$, which is characteristic of the β-form.

The bioassay of $\mathbf{1 1}$ will be reported in a separate paper in the near future.

Experimental

All reactions requiring anhydrous conditions were conducted in oven-dried $\left(120^{\circ} \mathrm{C}\right)$ apparatus under dry argon. Ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and THF were distilled from sodium in the presence of benzophenone ketyl. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JNM-LA-500 (500 MHz) spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the JEOL JNM-LA-500 (125 MHz) spectrometer; $\mathrm{p}=$ primary, $\mathrm{s}=$ secondary, $\mathrm{t}=$ tertiary, $\mathrm{q}=$ quaternary in ${ }^{13} \mathrm{C}$ NMR data. J-Values are given in Hz . IR spectra were measured with a JASCO FT/IR-200. Mass spectra were recorded on a

Fig. 1 Transition states of reduction of 9 and 15.

11α

11β

Fig. 2 NOE of $\mathbf{1 1 \alpha}$ and $\mathbf{1 1 \beta}$.
JEOL JMS-HX 110 mass spectrometer. For fast-atom bombardment (FAB) mass spectra, NBA refers to m-nitrobenzyl alcohol matrix. Optical rotations were measured with a JASCO DIP-370 polarimeter. Wakogel C-200, C-300 and Silicagel 60 (Kanto Chemical Co., Inc.) were used for column chromatography, Kieselgel $60 \mathrm{~F}_{254}$ (Merck) for TLC, and Wakogel B-5F for preparative TLC (PLC).

(2R,3R,4R)-4-(tert-Butoxycarbonylamino)-2,3,5-tris(tert-

 butyldimethylsilyloxy)-1-(2'-thienyl)pentan-1-one 5To a solution of $\mathbf{4}^{8}(1 \mathrm{mmol})$ in THF (3 ml) was added 2-thienylmagnesium bromide (2.5 mol equiv.) dropwise at $0^{\circ} \mathrm{C}$. After stirring for 3 h at the same temperature, the reaction mixture was quenched with 1 M HCl and then extracted with AcOEt. Purification was performed by the usual PLC method [developer: hexane-AcOEt (15:1)] to give ketone 5 in 78% yield. When the reaction mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, compound 5 and its cyclized compound were obtained in the same yield in the ratio $1: 3$.

Ketone 5. Oil; $v_{\max } / \mathrm{cm}^{-1}$ (neat) $1260,1470,1500,1680,1720$, 2860, 2930, 2960, 3450; MS (FAB) Calc. for $\mathrm{C}_{32} \mathrm{H}_{64} \mathrm{NO}_{6} \mathrm{SSi}_{3}$: $m / z(\mathrm{M}+\mathrm{H})$, 674.3761. Found: $m / z, 674.3784 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ -0.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.02 (3H, s, SiMe), 0.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.81 (9 H , $\left.\mathrm{s}, \mathrm{SiBu}^{t}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.39(9 \mathrm{H}, \mathrm{s}$, Boc), $3.69\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.99(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $4.74(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.12\left(1 \mathrm{H}, \mathrm{dd}, J 4.7\right.$ and $\left.3.6,4^{\prime}-\mathrm{H}\right), 7.64(1 \mathrm{H}$, $\left.\mathrm{d}, J 4.7,3^{\prime}-\mathrm{H}\right), 7.98\left(1 \mathrm{H}, \mathrm{d}, J 3.6,5^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.35(\mathrm{p})$, $-5.25(\mathrm{p}),-4.93(\mathrm{p}),-4.58(\mathrm{p}),-4.36(\mathrm{p}), 1.12(\mathrm{p}), 18.14(\mathrm{q})$, 18.36 (q), 25.85 (q), 25.96 (p), 26.00 (p), 26.15 (p), 28.51 (p), $55.12(\mathrm{t}), 61.69(\mathrm{~s}), 74.44(\mathrm{t}), 78.86(\mathrm{q}), 80.82(\mathrm{t}), 127.93(\mathrm{t})$, $133.86(\mathrm{t}), 133.95(\mathrm{t}), 142.20(\mathrm{q}), 155.50(\mathrm{q}), 193.08(\mathrm{q})$.
(5R)-3,4-O-Bis(tert-butyldimethylsilyloxy)-5-hydroxymethyl-2-(2^{\prime}-thienyl)- Δ^{1}-dihydropyrrole 6 and 2,3- O-bis(tert-butyl-dimethylsilyl)-1,4-dideoxy-1,4-imino-1-(2'-thienyl)-d-ribitol $7 \boldsymbol{\alpha}$ and 7β
A mixture of 5 (0.17 mmol), TFA (15 mmol), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was stirred for 3 h at room temperature. After evaporation the residue was dissolved in $\mathrm{EtOH}(5 \mathrm{ml}$) and then treated with $\mathrm{NaBH}_{3} \mathrm{CN}$ (5.0 mol equiv.). The resulting mixture was stirred for 2.5 h at room temperature. After the reaction mixture was neutralized with aq. NaHCO_{3}, usual purification with PLC [developer: hexane-AcOEt (3:1)] gave $7 \boldsymbol{\alpha}$ and $7 \boldsymbol{\beta}$ in 62 and 9% yield, respectively. When the first reaction mixture was quenched with aq. NaHCO_{3}, the pyrroline $\mathbf{6}$ was isolated.
Compound 6. Oil; $v_{\max } / \mathrm{cm}^{-1}$ (neat) 1470, 1600, 2880, 2930, 2960, 3270; MS (FAB) Calc. for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SSi}_{2}: m / z(\mathrm{M}+\mathrm{H})$, 442. Found: $m / z, 442 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.06(3 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe}), 0.14$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.15 (3H, s, SiMe), 0.83 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 3.74\left(1 \mathrm{H}\right.$, dd, $J 11.6$ and $\left.3.9,5-\mathrm{H}^{\mathrm{a}}\right)$, 4.07-4.19 $\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}\right.$ and $\left.5-\mathrm{H}^{\mathrm{b}}\right), 4.78(1 \mathrm{H}, \mathrm{d}$, $J 4.6,2-\mathrm{H}), 6.98-7.11\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 7.45(1 \mathrm{H}, \mathrm{d}, J 4.8$, $5^{\prime}-\mathrm{H}$).

Compound 7a. Oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 1040, 1120, 1160, 1250, 1470, 2860, 2930, 2960, 3300; MS (FAB) Calc. for $\mathrm{C}_{21} \mathrm{H}_{42^{-}}$ $\mathrm{NO}_{3} \mathrm{SSi}_{2}: m / z,(\mathrm{M}+\mathrm{H}), 444.2424$. Found: $m / z, 444.2411$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.45(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.10(3 \mathrm{H}, \mathrm{s}$, SiMe), $0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.92(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 3.47(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.3.5,5-\mathrm{H}^{\mathrm{a}}\right)$, $3.69\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.4.2,5-\mathrm{H}^{\mathrm{b}}\right), 4.01(1 \mathrm{H}$, dd, $J 3.4$ and 3.3 , $2-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $3.3,3-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{d}, J 3.3,1-\mathrm{H})$, $6.97\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 7.20\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $-5.20(\mathrm{p}),-4.69(\mathrm{p}),-4.04(\mathrm{p}),-3.66(\mathrm{p}), 18.26(\mathrm{q}), 18.32(\mathrm{q})$, 26.17 (p), 26.22 (p), $60.52(\mathrm{t}), 61.68$ (s), $62.62(\mathrm{t}), 75.39(\mathrm{t}), 76.90$ (t), $124.27(\mathrm{t}), 125.19(\mathrm{t}), 126.66(\mathrm{t}), 142.90(\mathrm{q})$.

Compound 7阝. Oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 1090, 1160, 1260, 1470, 2860, 2930, 2960, 3350; MS (FAB) Found: m / z 444.2440; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.45(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.07(3 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe}), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.92(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 3.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.4.0,5-\mathrm{H}^{\mathrm{a}}\right)$, $3.62\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.4.4,5-\mathrm{H}^{\mathrm{b}}\right), 3.79(1 \mathrm{H}$, dd, $J 5.7$ and 4.0 , $2-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and $3.9,3-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{d}, J 5.7$, $1-\mathrm{H}), 6.97\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 7.18(1 \mathrm{H}, \mathrm{dd}, J 4.7$ and 1.5 , $\left.5^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)-5.30(\mathrm{p}),-4.66(\mathrm{p}),-4.55(\mathrm{p}),-4.38(\mathrm{p})$, 18.01 (q), 18.06 (q), 25.89 (p), 25.89 (p), $61.80(\mathrm{t}), 62.58(\mathrm{~s})$, $63.46(\mathrm{t}), 74.10(\mathrm{t}), 80.62(\mathrm{t}), 123.69(\mathrm{t}), 123.77(\mathrm{t}), 126.90(\mathrm{t})$, 148.65 (q).

1,4-Dideoxy-1,4-imino-1-($\mathbf{2}^{\prime}$-thienyl)-d-ribitol 8α and 8β

A mixture of $7 \boldsymbol{\alpha}(0.37 \mathrm{mmol}), \mathrm{MeOH}(3 \mathrm{ml})$, and conc. HCl (3 ml) was refluxed for 3 h . After evaporation the residue was dissolved in a small amount of $\mathrm{MeOH} . \mathrm{Et}_{2} \mathrm{O}$ was added to the resulting solution to give the hydrochloride salt as a white precipitate. This reprecipitation was repeated to give pure $\mathbf{8 a} \cdot \mathrm{HCl}$ in 87% yield. In the same way, $\mathbf{8} \boldsymbol{\beta} \cdot \mathrm{HCl}$ was isolated starting from $7 \boldsymbol{\beta}$ in 90% yield.

Free base 8a. Powder; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 1410,1560,2360$, 2930, 3310; MS (FAB) Calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}: m / z(\mathrm{M}+\mathrm{H})$, 216.0694. Found: $m / z, 216.0679 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.23(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.62\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.3.9,5-\mathrm{H}^{\mathrm{a}}\right), 3.72(1 \mathrm{H}$, dd, $J 11.1$ and $\left.5.8,5-\mathrm{H}^{\mathrm{b}}\right), 4.00(1 \mathrm{H}$, dd, $J 4.0$ and $3.2,2-\mathrm{H}), 4.10(1 \mathrm{H}$, dd, $J 7.7$ and $4.0,3-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{d}, J 3.2,1-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $\left.3.5,4^{\prime}-\mathrm{H}\right), 7.07\left(1 \mathrm{H}, \mathrm{d}, J 3.5,3^{\prime}-\mathrm{H}\right), 7.30(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $\left.1.0,5^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 61.28(\mathrm{t}), 63.96(\mathrm{~s}), 64.65(\mathrm{t}), 75.88(\mathrm{t})$, $75.88(\mathrm{t}), 125.93(\mathrm{t}), 126.67(\mathrm{t}), 127.23(\mathrm{t}), 143.16$ (q).

Free base $8 \boldsymbol{\beta}$. Powder; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 1410,1560,1660$, 2360, 2930, 3340; MS (FAB) Calc for. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}: m / z(\mathrm{M}+$ H), 216.0694. Found: $\mathrm{m} / \mathrm{z}, 216.0701 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.06(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.57\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}^{\mathrm{a}}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.76(1 \mathrm{H}$, dd, $J 7.0$ and 5.9 , $2-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $4.6,3-\mathrm{H}), 4.18(1 \mathrm{H}, \mathrm{d}, J 7.0,1-\mathrm{H})$, $6.88\left(1 \mathrm{H}, \mathrm{dd}, J 5.1\right.$ and $\left.3.5,4^{\prime}-\mathrm{H}\right), 6.98\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 7.19(1 \mathrm{H}$,
$\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 62.83(\mathrm{t}), 63.12(\mathrm{~s}), 66.09(\mathrm{t}), 73.27(\mathrm{t})$, $79.25(\mathrm{t}), 125.57(\mathrm{t}), 125.75(\mathrm{t}), 128.02(\mathrm{t}), 145.45(\mathrm{q})$.
(2R,3R,4R)-4-(tert-Butoxycarbonylamino)-2,3,5-tris(tert-butyldimethylsilyloxy)-1-(2', $\mathbf{4}^{\prime}$-dimethoxypyrimidin- 5^{\prime}-yl)-pentan-1-one 9
To a solution of 5-bromo-2,4-dimethoxypyrimidine (3 mmol) in THF (15 ml) was added n-butyllithium (3 mmol) dropwise at $-78^{\circ} \mathrm{C}$. After stirring of this mixture for 10 min , a solution of 4 (3 mmol) in THF (3 ml) was added to the solution at the same temperature. After additional stirring for 2 h at the same temperature, the reaction mixture was quenched with 1 M HCl and then extracted with AcOEt. Purification was performed by the usual PLC method [developer: hexane-AcOEt (4:1)] to give ketone 9 in 28\% yield.

Ketone 9. Oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $1470,1500,1680,1720,2860$, 2930, 2960, 3450; MS (FAB) Calc. for $\mathrm{C}_{34} \mathrm{H}_{68} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{3}: \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H}), 730$. Found: $\mathrm{m} / \mathrm{z}, 730 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.48(3 \mathrm{H}, \mathrm{s}$, SiMe), -0.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.10(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.80 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.11(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc})$, $3.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.88-4.06\left(8 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OMe}\right.$ and $\left.5-\mathrm{H}_{2}\right), 4.29$ $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}), 4.89(1 \mathrm{H}, \mathrm{br}$ s, NH$), 8.52\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.43(\mathrm{p}),-5.43(\mathrm{p}),-5.07(\mathrm{p}),-4.80(\mathrm{p}),-4.48$ (p), -4.39 (p), 18.00 (q), 18.05 (q), 18.50 (q), 25.84 (p), 25.92 (p), $26.08(\mathrm{p}), 28.14(\mathrm{p}), 53.30(\mathrm{p}), 55.00(\mathrm{p}), 61.61(\mathrm{~s}), 65.78(\mathrm{t})$, 72.14 (t), 73.77 (t), 79.98 (q), 87.64 (q), 115.95 (q), 154.35 (q), 159.39 (t), 164.78 (q), 166.54 (q).

(1R)-2,3-O-Bis(tert-butyldimethylsilyl)-1,4-dideoxy-1-(2', $\mathbf{4}^{\prime}$ -dimethoxypyrimidin- 5^{\prime}-yl)-1,4-imino-D-ribitol 10

A mixture of $9(0.22 \mathrm{mmol})$, TFA (13.2 mmol), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{ml})$ was stirred for 3 h at room temperature. After evaporation the residue was dissolved in $\mathrm{EtOH}(5 \mathrm{ml})$ and then $\mathrm{NaBH}_{3} \mathrm{CN}$ (5.0 mol equiv.) was added to this solution. The resulting mixture was stirred for 2.5 h at room temperature. Usual purification with PLC using AcOEt as developer gave $\mathbf{1 0}$ as the α-form in 40% yield.

Compound 10. Oil; $v_{\max } / \mathrm{cm}^{-1}$ (neat) 1380, 1400, 1470, 1580, 1600, 2860, 2930, 2960, 3430; MS (FAB) Calc. for $\mathrm{C}_{23} \mathrm{H}_{46}$, $\mathrm{N}_{3} \mathrm{O}_{5} \mathrm{Si}_{2}: m / z(\mathrm{M}+\mathrm{H})$, 500.2976. Found: m / z, 500.2965; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.55(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.10(3 \mathrm{H}$, s, SiMe), 0.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.74 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}$), 0.91 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 3.36(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.4.8,5-\mathrm{H}^{\mathrm{a}}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.3.4,5-\mathrm{H}^{\mathrm{b}}\right), 3.97(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.98(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.12(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{d}, J 2.4,1-\mathrm{H}), 8.27$ $\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.22(\mathrm{p}),-4.82(\mathrm{p}),-4.34(\mathrm{p}),-3.73$ (p), 17.97 (q), 18.15 (q), 25.78 (p), 26.07 (p), 53.92 (p), 54.75 (p), $56.34(\mathrm{t}), 61.45(\mathrm{~s}), 62.32(\mathrm{t}), 75.02(\mathrm{t}), 75.53(\mathrm{t}), 112.59(\mathrm{q})$, 157.53 (t), 164.46 (q), 168.44 (q).

(1R)-1,4-Dideoxy-1-($\mathbf{2}^{\prime}, 4^{\prime}$-Dioxo- $\mathbf{1}^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydropyr-imidin-5'-yl)-1,4-imino-D-ribitol 11 α

Deprotection of $\mathbf{1 0}$ was performed by the same method as described in the preparation of $\mathbf{8 \alpha}$ and $\mathbf{8 \beta}$. The pure salt 11 $\boldsymbol{\alpha}$ was obtained in 85% yield.

Salt $11 \alpha \cdot \mathrm{HCL}$. Powder; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1110,1120,1220$, 1400, 1440, 1670, 1720, 2930, 3420; MS (FAB) Calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}: m / z(\mathrm{M}+\mathrm{H}), 244.0933$. Found: m / z, 244.0922; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 3.61(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.75\left(1 \mathrm{H}, \mathrm{dd}, J 12.6\right.$ and $\left.5.7,5-\mathrm{H}^{\mathrm{a}}\right)$, $3.86\left(1 \mathrm{H}, \mathrm{dd}, J 12.6\right.$ and $\left.3.4,5-\mathrm{H}^{\mathrm{b}}\right), 4.23-4.28(2 \mathrm{H}, \mathrm{m}, 2-$ and $3-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{d}, J 2.7,1-\mathrm{H}), 7.83\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 59.65$ $(\mathrm{t}), 61.09(\mathrm{~s}), 64.95(\mathrm{t}), 74.33(\mathrm{t}), 74.56(\mathrm{t}), 106.71(\mathrm{q}), 146.57(\mathrm{t})$, 155.10 (q), 168.32 (q).

(1S,2S,3R,4R)-4-(tert-Butoxycarbonylamino)-2,3,5-tris (tert-butyldimethylsilyloxy)-1-(2', $\mathbf{4}^{\prime}$-dimethoxypyrimidin- 5^{\prime}-yl)-pentan-1-ol 12

A mixture of $\mathbf{9}(0.21 \mathrm{mmol}), \mathrm{EtOH}(5 \mathrm{ml})$, and $\mathrm{NaBH}_{4}(1.5 \mathrm{~mol}$
equiv.) was stirred for 10 h at room temperature. After being quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was extracted with AcOEt and the solvent was then removed by rotary evaporation to give the residue, which was then purified by using PLC on silica gel [developer: hexane-AcOEt (4:1)] to give 55 mg of compound $\mathbf{1 2}$ and 91 mg of recovered $\mathbf{9}$. The yield of $\mathbf{1 2}$ is 36% and the conversion yield is 59%.

Alcohol 12. Oil; $v_{\max } / \mathrm{cm}^{-1}$ (neat) $1570,1600,1720,2860$, 2900, 2930, 2960, 3310, 3430; MS (FAB) Calc. for $\mathrm{C}_{34} \mathrm{H}_{70^{-}}$ $\mathrm{N}_{3} \mathrm{O}_{8} \mathrm{Si}_{3}: m / z(\mathrm{M}+\mathrm{H})$, 732.4471. Found: $m / z, 732.4481$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.43(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.05(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.07 (3H, s, SiMe), 0.12 (3H, s, $\mathrm{SiMe}), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.91(9 \mathrm{H}, \mathrm{s}$, SiBu^{t}), $1.43(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), 3.71-3.81\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}_{2}\right), 3.97$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.00-4.02(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and}$ $3-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.04(1 \mathrm{H}$, br s, $1-\mathrm{H}), 8.36\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.61(\mathrm{p}),-5.48(\mathrm{p}),-5.26(\mathrm{p}),-5.14(\mathrm{p}),-4.06$ (p), -3.92 (p), 18.13 (q), 18.21 (q), 18.28 (q), 25.74 (p), 25.90 (p), 26.07 (p), 28.40 (p), 53.91 (p), 54.74 (p), 61.59 (s), 67.88 (t), $71.93(\mathrm{t}), 72.43(\mathrm{t}), 75.64(\mathrm{t}), 79.23(\mathrm{q}), 115.09(\mathrm{q}), 155.51(\mathrm{q})$, 157.85 (t), 167.67 (q), 174.52 (q).

N-(tert-Butoxycarbonyl)-2,3,5-O-tris(tert-butyldimethylsily)-1,4-dideoxy-1-($\mathbf{2}^{\prime}, \mathbf{4}^{\prime}$-dimethoxypyrimidin- $\mathbf{5}^{\prime}$-yl)-1,4-imino-dribitol 13

A mixture of $\mathbf{1 2}(0.06 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(0.12 \mathrm{mmol})$, and $\mathrm{MsCl}(0.12 \mathrm{mmol})$ was stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with CHCl_{3}. Usual purification by using PLC [developer: hexane-AcOEt (4:1)] gave compound 13 in 87% yield.

Compound 13. Oil; $v_{\max } / \mathrm{cm}^{-1}$ (neat) $1570,1600,1700,2860$, 2930, 2960; MS (FAB) Calc. for $\mathrm{C}_{34} \mathrm{H}_{68} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}_{3}: ~ m / z(\mathrm{M}+\mathrm{H})$, 714.4365. Found: $m / z, 714.4347 ; \delta_{\mathrm{H}}(\mathrm{DMSO})-0.28(3 \mathrm{H}, \mathrm{s}$, SiMe), -0.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), -0.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $-0.04(3 \mathrm{H}, \mathrm{s}$, SiMe), -0.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.69 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 0.77\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.13(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc})$, $3.57(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.4.1,5-\mathrm{H}^{\mathrm{a}}\right), 3.78(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $7.3,5-\mathrm{H}^{\mathrm{b}}$), $4.05-4.08(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{d}, J 5.5,1-\mathrm{H}), 8.19$ $\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.48(\mathrm{p}),-5.31(\mathrm{p}),-5.10(\mathrm{p}),-4.96$ (p), -4.65 (p), -4.15 (p), 18.02 (q), 18.09 (q), 18.52 (q), 25.68 (p), 26.10 (p), 26.21 (p), 28.36 (p), 53.43 (p), 53.92 (p), 54.67 (p), $61.15(\mathrm{~s}), 66.78(\mathrm{t}), 71.28(\mathrm{t}), 71.71(\mathrm{t}), 74.80(\mathrm{t}), 79.99(\mathrm{q})$, 114.83 (q), 155.32 (q), 164.42 (t), 168.20 (q), 178.12 (q).

(1S)-1,4-Dideoxy-1-($2^{\prime}, 4^{\prime}$-dioxo-1' $\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydropyrimidin-

 5^{\prime}-yl)-1,4-imino-d-ribitol 11βA mixture of $\mathbf{1 3}(0.064 \mathrm{mmol}), \mathrm{MeOH}(5 \mathrm{ml})$, and conc. HCl $(5 \mathrm{ml})$ was refluxed for 3 h . Work-up was performed by the same way as described in the preparation of $\mathbf{1 1 \alpha}$ to give pure salt $\mathbf{1 1 \beta}$ in 95% yield.
Salt $11 \beta \cdot \mathrm{HCl}$. Powder; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1130,1260,1420$, 1630, 1660, 1710, 3280, 3390, 3450, 3520; MS (FAB) Calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}: m / z(\mathrm{M}+\mathrm{H}), 244.0933$. Found: $m / z, 244.0929$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 3.65(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.75\left(1 \mathrm{H}, \mathrm{dd}, J 12.7\right.$ and $\left.5.5,5-\mathrm{H}^{\mathrm{a}}\right)$, $3.79\left(1 \mathrm{H}, \mathrm{dd}, J 12.7\right.$ and $\left.4.3,5-\mathrm{H}^{\mathrm{b}}\right), 4.21(1 \mathrm{H}, \mathrm{dd}, J 5.2$ and 3.7 , $3-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{d}, J 8.5,1-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $5.2,2-\mathrm{H})$, $7.64\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 61.29(\mathrm{~s}), 62.64(\mathrm{t}), 68.22(\mathrm{t}), 73.21$ (t), $74.24(\mathrm{t}), 106.98(\mathrm{q}), 146.79(\mathrm{t}), 155.42(\mathrm{q}), 168.29(\mathrm{q})$.
(2R,3R,4R)-4-(tert-Butoxycarbonylamino)-5-(tert-butyldimethyl-silyloxy)-1-($2^{\prime}, 4^{\prime}$-dimethoxypyrimidin- 5^{\prime}-yl)-2,3-(isopropyl-idenedioxy)pentan-1-one 15 and ($2 S, 3 R, 4 R$)-4-(tert-butoxy-carbonylamino)-5-(tert-butyldimethylsilyloxy)-1-($2^{\prime}, 4^{\prime}$-dimethoxy-pyrimidin- 5^{\prime}-yl)-2,3-(isopropylidenedioxy)pentan-1-ol 16
The reaction of $\mathbf{1 4}^{\mathbf{9}}$ with 5-lithio-2,4-dimethoxypyrimidine was carried out by the same method as described in the preparation of 9 . Purification was performed by column chromato-
graphy [eluent: hexane-AcOEt (2:1)] to give ketone 15, which was then reduced with $\mathrm{NaBH}_{4}(1 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{ml})$. The mixture was stirred for 3 h at room temperature and then quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$. Usual work-up using PLC [developer: hexane-AcOEt (2:1)] gave alcohol 16 in 65% yield.

Ketone 15. Oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $1590,1700,2860,2930,2960$, 3450; MS (FAB) Calc. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}: m / z(\mathrm{M}+\mathrm{H})$, 542.2898. Found: $m / z, 542.2898 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, 0.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.20(3 \mathrm{H}, \mathrm{s}$, isopropyl idene-Me), $1.42(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), 1.57(3 \mathrm{H}, \mathrm{s}$, isopropylidene-Me), $3.56(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.6.0,5-\mathrm{H}^{\mathrm{a}}\right), 3.82(1 \mathrm{H}$, dd, $J 10.1$ and $3.0,5-\mathrm{H}^{\mathrm{b}}$), $3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.23-4.65 ($3 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}$ and NH), $8.23\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.66(\mathrm{p}),-5.43(\mathrm{p}), 17.96(\mathrm{q}), 24.89(\mathrm{p}), 25.69(\mathrm{p})$, $27.93(\mathrm{p}), 28.15(\mathrm{p}), 62.40(\mathrm{t}), 63.12(\mathrm{~s}), 63.60(\mathrm{p}), 64.20(\mathrm{p})$, 80.03 (t), 80.60 (t), 84.77 (t), $87.50(\mathrm{q}), 109.85(\mathrm{q}), 112.39(\mathrm{q})$, 153.87 (q), 157.36 (t), 164.09 (q), 166.28 (q).

Alcohol 16. Oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 1580, 1600, 1720, 2860, 2930, 2960, 2990, 3400; MS (FAB) Calc. for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}: \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H}), 544.3054$. Found: $m / z, 544.3053 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.04(3 \mathrm{H}$, s, SiMe), $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.22(3 \mathrm{H}, \mathrm{s}$, isopropylidene-Me), $1.25(3 \mathrm{H}, \mathrm{s}$, isopropylidene-Me), $1.42(9 \mathrm{H}$, s, Boc), $3.72\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.3.0,5-\mathrm{H}^{\mathrm{a}}\right), 3.91(1 \mathrm{H}$, dd, $J 10.1$ and $\left.3.4,5-\mathrm{H}^{\mathrm{b}}\right), 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.00(1 \mathrm{H}$, m, $4-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{dd}, J 9.3$ and $4.9,3-\mathrm{H}), 4.43(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $4.9,2-\mathrm{H}), 4.87(1 \mathrm{H}, \mathrm{d}, J 9.5,1-\mathrm{H}), 8.19\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.49(\mathrm{p}),-5.44(\mathrm{p}), 18.37(\mathrm{q}), 25.52(\mathrm{p}), 25.91(\mathrm{p})$, 27.63 (p), $28.35(\mathrm{p}), 53.85(\mathrm{t}), 54.66$ (p), 54.73 (p), 63.08 (s), 65.48 (t), 76.17 (t), 78.79 (t$), 80.35$ (q), 107.97 (q), 115.57 (q), 156.30 (q), 157.67 (t), 164.64 (q), 169.04 (q).

N -(tert-Butoxycarbonyl)-5-O-(tert-butyldimethylsilyl)-1,4-dideoxy-1-($\mathbf{2}^{\prime}, \mathbf{4}^{\prime}$-dimethoxypyrimidin- $\mathbf{5}^{\prime}$-yl)-1,4-imino-2,3-O-isopropylidene-D-ribitol 17α and 17β

A mixture of $\mathbf{1 6}(0.65 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{mmol})$, and $\mathrm{MsCl}(1.3 \mathrm{mmol})$ was treated by the same method as described in the preparation of 13. Purification was carried out by usual PLC [developer: hexane-AcOEt $(2: 1)$] to give compounds $\mathbf{1 7 \alpha}$ and $\mathbf{1 7 \beta}$ in 80 and 11% yield, respectively. Compounds 17α and 17β were deprotected by the usual method using $\mathrm{HCl}-\mathrm{MeOH}$ to give thiols $\mathbf{1 1 \boldsymbol { \alpha }}$ and $\mathbf{1 1} \boldsymbol{\beta}$ in 87 and 90% yield, respectively.

Compound 17a. Oil; $[\alpha]_{\mathrm{D}}^{25}-75.1 \times 10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}(c 0.20$ in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $1470,1580,1600,1700,2360,2860$, 2930, 2960; MS (FAB) Calc. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}: m / z(\mathrm{M}+\mathrm{H})$, 526.2949. Found: $m / z, 526.2940 ; \delta_{\mathrm{H}}(\mathrm{DMSO}) 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, $0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.02$ (3 H , s, isopropyl-idene-Me), $1.14(12 \mathrm{H}, \mathrm{s}$, Boc and isopropylidene-Me), $3.70(1 \mathrm{H}$, $\left.\mathrm{m}, 5-\mathrm{H}^{\mathrm{a}}\right), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.97(2 \mathrm{H}, \mathrm{m}$,
$4-\mathrm{H}$ and $\left.5-\mathrm{H}^{\mathrm{b}}\right), 4.66(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}), 4.99(1 \mathrm{H}, \mathrm{d}, J 5.8$, $1-\mathrm{H}), 7.81\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(\mathrm{DMSO})-6.27(\mathrm{p}),-6.18(\mathrm{p})$, 17.17 (q), 23.93 (p), 24.65 (p), 25.11 (p), 27.27 (p), 52.96 (p), 53.62 (p), 58.21 (q), 61.73 (s), $63.26(\mathrm{t}), 78.50(\mathrm{t}), 78.66(\mathrm{t}), 81.30$ (t), 110.21 (q), 112.27 (q), 152.87 (q), 156.26 (t), 163.32 (q), 167.00 (q).

Compound 17ß. Oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 1470, 1570, 1600, 1700, 2360, 2860, 2930, 2960; MS (FAB) Found: m / z 526.2927; $\delta_{\mathrm{H}}(\mathrm{DMSO}) 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.80(9 \mathrm{H}, \mathrm{s}$, SiBu^{t}), $1.23(3 \mathrm{H}, \mathrm{s}$, isopropylidene-Me), $1.28(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), 1.39$ $\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene-Me), $3.67\left(1 \mathrm{H}, \mathrm{dd}, J 10.3\right.$ and $\left.4.5,5-\mathrm{H}^{\mathrm{a}}\right)$, $3.75\left(1 \mathrm{H}, \mathrm{dd}, J 10.3\right.$ and $\left.4.0,5-\mathrm{H}^{\mathrm{b}}\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91(3 \mathrm{H}$, s , OMe), $4.00(1 \mathrm{H}$, ddd, $J 4.5,4.0$ and $1.4,4-\mathrm{H}), 4.53(1 \mathrm{H}$, dd, $J 5.7$ and $2.2,2-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{dd}, J 5.7$ and $1.4,3-\mathrm{H}), 4.81(1 \mathrm{H}$, d, $J 2.2,1-\mathrm{H}), 8.03\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(\mathrm{DMSO})-5.65(\mathrm{p}),-5.65$ (p), 17.83 (q), 25.25 (p), 25.62 (p), 27.29 (p), 27.85 (p), 53.93 (p), $54.34(\mathrm{p}), 62.63(\mathrm{~s}, \mathrm{q}), 65.50(\mathrm{t}), 79.63(\mathrm{t}), 81.08(\mathrm{t}), 84.59$ (t), 110.96 (q), 112.92 (q), 153.47 (q), 155.83 (t), 164.16 (q), 167.71 (q).

References

1 (a) H. Togo, M. Aoki and M. Yokoyama, Tetrahedron Lett., 1991, 32, 6559; (b) H. Togo, S. Ishigami and M. Yokoyama, Chem. Lett., 1992, 1673; (c) H. Togo, M. Aoki, T. Kuramochi and M. Yokoyama, J. Chem. Soc., Perkin Trans. 1, 1993, 2417; (d) M. Yokoyama, T. Tanabe, A. Toyoshima, T. Akiba and H. Togo, Synthesis, 1993, 517; (e) M. Yokoyama, A. Toyoshima, A. Akiba and H. Togo, Chem Lett., 1994, 265; (f) S. Ishigami, H. Togo and M. Yokoyama, J. Chem. Soc., Perkin Trans. 1, 1994, 2407; (g) H. Togo, S. Ishigami, M. Fujii, T. Ikuma and M. Yokoyama, J. Chem. Soc., Perkin Trans. 1, 1994, 2931; (h) M. Yokoyama, T. Akiba and H. Togo, Synthesis, 1995, 638; (i) M. Yokoyama, M. Nomura, T. Tanabe and H. Togo, Heteroatom. Chem., 1995, 6, 189; (j) M. Yokoyama, M. Nomura, H. Togo and H. Seki, J. Chem. Soc., Perkin Trans. 1, 1996, 2145; (k) M. Yokoyama, H. Toyoshima, M. Shimizu and H. Togo, J. Chem. Soc., Perkin Trans. 1, 1997, 29; (l) W. Hei, H. Togo, H. Ogawa and M. Yokoyama, Heteroatom. Chem., 1997, 8, 411.

2 Reviews: (a) A. Momotake, H. Togo and M. Yokoyama, Yuki Gosei Kagaku Kyokaishi, 1998, 56, 1036 (in Japanese) (Chem. Abstr., 1999, 130, 66671d); (b) M. Yokoyama and A. Momotake, Synthesis, 1999, 1541.

3 (a) M. Yokoyama, T. Akiba, Y. Ochiai, A. Momotake and H. Togo, J. Org. Chem., 1996, 61, 6079; (b) A. Momotake, J. Mito, K. Yamaguchi, H. Togo and M. Yokoyama, J. Org. Chem., 1998, 63, 7207.

4 M. Yokoyama, T. Ikeue, Y. Ochiai, A. Momotake, K. Yamaguchi and H. Togo, J. Chem. Soc., Perkin Trans. 1, 1998, 2185.

5 A. Momotake, H. Togo and M. Yokoyama, J. Chem. Soc., Perkin Trans. 1, 1999, 1193.
6 H. Adkins and H. R. Billica, J. Am. Chem. Soc., 1948, 70, 3121.
7 K.-C. Woo and K. Jones, Tetrahedron Lett., 1991, 32, 6949.
8 G. Rassu, L. Pinna, P. Spanu, F. Ulgheri and G. Casiraghi, Tetrahedron Lett., 1994, 35, 4019.
9 H. Yoda, T. Oguchi and K. Takabe, Tetrahedron: Asymmetry, 1996, 7, 2113.

